Effects of TiO2 nanotube array dimension and annealing

نویسندگان

  • Young Ku
  • Zhan-Rong Fan
  • Yiang-Chen Chou
  • Wen-Yu Wang
چکیده

Degradation of Acid Red 4 (AR4) by photocatalytic processes with TiO2 nanotube arrays (TNTs) of various dimensions was carried out in this study. TNTs was fabricated by the anodization of titanium foil in electrolyte containing fluoride. The dimension and the induced photocurrent of TNTs were determined by a field-emission scanning electron microscopy and a potentialstat/galvanostat, respectively. The well-defined and highly-ordered TNTs were formed at the anodization voltage ranging from 10 to 40 V in water/glycerol solution (20:80 wt.%) containing 0.5 wt.% NH4F. TNTs annealed at 6008C was found to induce the highest photocurrent and to exhibit the preeminent performance of AR4 degradation. The apparent first-ordered reaction rate constant for AR4 degradation was roughly linearly dependent on the induced photocurrent of TNTs, despite the dimension of nanotubes. The depths of incident UV light penetration through the nanotubes and of AR4 diffusion inside nanotubes restricted the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study

TiO2 nanotube arrays on the surface of dental implants were fabricated by two-step anodic oxidation. Their effects on bone-implant contact were researched by a pilot in vivo study. The implants were classified into four groups. An implant group with TiO2 nanotube arrays and recombinant human bone morphogenetic protein-2 (rhBMP-2) was compared with various surface implants, including machined su...

متن کامل

Carbon monoxide annealed TiO2 nanotube array electrodes for efficient biosensor applications†

Highly ordered titania nanotube (TNT) arrays fabricated by anodic oxidation of titanium foil followed with O2 and CO annealing were employed as matrices for the immobilization of horseradish peroxidase (HRP) and thionine chloride (Th) for biosensor application. The influence of annealing gases on TNT crystallinity, morphology, surface chemistry, and electrochemical properties were investigated ...

متن کامل

Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: effects of TiO2 crystalline phase

TiO2 nanotube arrays were synthesized by anodization of Ti metal sheets followed by thermal annealing at elevated temperatures from 400 to 600 C. Scanning electron microscopic measurements showed that dense arrays of nanotubes were produced with the inner diameter about 100 nm, wall thickness 35 nm, and length about 10 lm. X-ray diffraction measurements showed that the as-prepared nanotubes wer...

متن کامل

High Efficient Transparent TiO2 Nanotube Dye-Sensitized Solar Cells: Adhesion of TiO2 Nanotube Membrane to FTO by Two Different Methods

In order to fabricate transparent TiO2 nanotube dye-sensitized solar cells, anodically growth nanotube membranes are detached from Ti substrate by a re-anodization method. The membranes are transferred on FTO glass by two different methods. At the first one, 100mM Ti-isopropoxide is used to make TiO2 nanoparticles for adhering TiO2 nanotube membranes to FTO and ...

متن کامل

Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile.

We use free-standing TiO2 nanotube membranes that are transferred onto FTO slides in front-side illuminated dye-sensitized solar cells (DSSCs). We investigate the key parameters for solar cell arrangement of self-ordered anodic TiO2 nanotube layers on the FTO substrate, namely the influence of the annealing procedure on the DSSC light conversion efficiency. The results show that using an optima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010